Neuronal Spike Train Analysis in Likelihood Space

نویسندگان

  • Yousef Salimpour
  • Hamid Soltanian-Zadeh
  • Sina Salehi
  • Nazli Emadi
  • Mehdi Abouzari
چکیده

BACKGROUND Conventional methods for spike train analysis are predominantly based on the rate function. Additionally, many experiments have utilized a temporal coding mechanism. Several techniques have been used for analyzing these two sources of information separately, but using both sources in a single framework remains a challenging problem. Here, an innovative technique is proposed for spike train analysis that considers both rate and temporal information. METHODOLOGY/PRINCIPAL FINDINGS Point process modeling approach is used to estimate the stimulus conditional distribution, based on observation of repeated trials. The extended Kalman filter is applied for estimation of the parameters in a parametric model. The marked point process strategy is used in order to extend this model from a single neuron to an entire neuronal population. Each spike train is transformed into a binary vector and then projected from the observation space onto the likelihood space. This projection generates a newly structured space that integrates temporal and rate information, thus improving performance of distribution-based classifiers. In this space, the stimulus-specific information is used as a distance metric between two stimuli. To illustrate the advantages of the proposed technique, spiking activity of inferior temporal cortex neurons in the macaque monkey are analyzed in both the observation and likelihood spaces. Based on goodness-of-fit, performance of the estimation method is demonstrated and the results are subsequently compared with the firing rate-based framework. CONCLUSIONS/SIGNIFICANCE From both rate and temporal information integration and improvement in the neural discrimination of stimuli, it may be concluded that the likelihood space generates a more accurate representation of stimulus space. Further, an understanding of the neuronal mechanism devoted to visual object categorization may be addressed in this framework as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Static and dynamic models for spike train analysis Models, model diagnostics and open-source software

Abstract We present a collection of modeling tools for the analysis of neuronal spike trains as point processes. The conditional intensity can be modeled to depend on variables such as time elapsed since the last spike, time elapsed since the onset of stimulus, etc., and the models can be estimated nonparametrically by penalized likelihood Poisson regression or logistic regression. Model diagno...

متن کامل

Estimating the Temporal Interval Entropy of Neuronal Discharge

To better understand the role of timing in the function of the nervous system, we have developed a methodology that allows the entropy of neuronal discharge activity to be estimated from a spike train record when it may be assumed that successive interspike intervals are temporally uncorrelated. The so-called interval entropy obtained by this methodology is based on an implicit enumeration of a...

متن کامل

Estimating nonstationary input signals from a single neuronal spike train.

Neurons temporally integrate input signals, translating them into timed output spikes. Because neurons nonperiodically emit spikes, examining spike timing can reveal information about input signals, which are determined by activities in the populations of excitatory and inhibitory presynaptic neurons. Although a number of mathematical methods have been developed to estimate such input parameter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011